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Heralded generation of a micro-macro entangled state

Ulrik L. Andersen* and Jonas S. Neergaard-Nielsen
Department of Physics, Technical University of Denmark, Fysikvej, 2800 Kgs. Lyngby, Denmark

(Received 16 October 2012; revised manuscript received 19 July 2013; published 29 August 2013)

Using different optical setups based on squeezed state and photon subtraction we show how optical
entanglement between a macroscopic and a microscopic state—the so-called Schrödinger cat state or micro-macro
state—can be generated. The entangled state is heralded and is thus produced a priori in contrast to previous
proposals. We define the macroscopicity of the macroscopic part of the state as their mean distance in phase
space and the success rate in discriminating them with homodyne detection, and subsequently, based on these
measures we investigate the macroscopicity of different states. Furthermore, we show that the state can be used
to map a microscopic qubit onto a macroscopic one thereby linking a qubit processor with a qumode processor.
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I. INTRODUCTION

Quantum superpositions are at the heart of quantum
mechanics. Simple examples are two-dimensional superpo-
sitions of microscopic systems such as two-level atoms, the
polarization of a single photon, and the spin of an electron.
Being at a microscopic level, these superpositions are readily
accepted but if they are brought to the macroscopic level
they become counterintuitive and hardly imaginable. This is
commonly illustrated by the famous Gedankenexperiment of
Schrödinger in 1935 where he considers the superposition of a
cat in two distinct states: dead and alive [1]. In this experiment
the cat is entangled with a microscopic degree of freedom,
namely the discrete energy levels of an atom. Therefore,
the proposal does not only demonstrate the superposition
principle on a macroscopic scale but also the peculiar feature
of nonlocality [2].

In recent years there has been a strong focus on bringing
quantum mechanics into a macroscopic realm through careful
state engineering and suppression of environmental noisy
modes [3]. Macroscopic superpositions of atomic clouds [4],
superconducting circuits [5,6], ions [7], and microwaves [8]
have been prepared, and there are proposals on how to push
this into a regime of massive systems [9] and even living
organisms [10].

In the pure optical regime there have also been a number of
successful attempts to generate macroscopic quantum states.
One example is the generation of coherent state superpositions
by means of photon subtraction of a squeezed vacuum state
[11–15]. Although being useful for quantum information
processing [16], strictly speaking, these states are not cat
states in the spirit of Schrödinger as the macroscopic states
(here coherent states) are not entangled with a microscopic
degree of freedom. Another realization of a macroscopic state
is the so-called micro-macro state in which the polarization
degree of freedom of a single photon is entangled with distinct
states containing a large number of photons [17]. These states
have been produced in a nonheralded fashion [18,19] and their
characterization has been discussed in several papers [19–22].
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In this paper we suggest a number of different strate-
gies for generating a heralded micro-macro state based on
standard quantum optical tools. As opposed to previous
proposals and experiments on micro-macro entanglement, in
the present scheme the entanglement is produced between
a microscopic photon number (or phase) degree of freedom
and a macroscopic wave degree of freedom also known as
a qumode [23,24]. In some of the suggested realizations
the macroscopic states are classically distinguishable. This
distinguishability is referred to as the macroscopicity of the
state which will be discussed in relation to different measures:
the mean phase-space distance between the two macroscopic
states and their distinguishability with respect to a quadrature
measurement. Finally, we also discuss how these states can be
used to map a microscopic qubit onto a macroscopic qumode
by means of teleportation.

II. SQUEEZING-INDUCED MICRO-MACRO STATE

A micro-macro state can be written as

|m+〉|�+〉 + |m−〉|�−〉, (1)

where {|m+〉,|m−〉} are orthogonal microscopic states and
|�+〉,|�−〉 are states that are macroscopic in a certain degree
of freedom. The micro-macro degrees of freedom are often
considered to be the photon numbers but it could also
be another observable such as the quadrature observable.
Moreover, one could consider different observables associated
with the microscopic and the macroscopic states (as will be
used later in this paper). Before discussing the definition of
macroscopicity, we will consider some particular realizations
of the heralded micro-macro state.

In the experiment of De Martini et al. [19], the polarization
degree of freedom of a single photon was entangled with
the polarization degree of freedom of a macroscopic state
containing a large number of photons exceeding 104. This was
enabled by unitary amplification (using a phase-insensitive,
polarization nondegenerate two-mode squeezer) on one-half
of a polarization entangled photon pair produced by para-
metric down-conversion. The experiment was carried out in
the coincidence basis, and thus the resulting micro-macro
entangled state was generated a posteriori: Although the
amplification process was deterministic, the generation of
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FIG. 1. (Color online) Schematic setup of the proposed schemes.
S denotes a single-mode squeezing operation and TMS is a two-mode
vacuum squeezer.

polarization entangled photons was nonheralded. Heralded
generation of polarization entangled photons has recently been
realized [25,26] in complicated setups and its extension to
produce a heralded micro-macro state renders the setup even
more challenging.

Instead of amplifying polarization entangled photons with
a two-mode squeezer, we suggest to amplify a path-entangled
single photon with a single-mode squeezer. The setup is
shown in Fig. 1(a). A single photon is prepared (e.g., by
heralded parametric down-conversion) and subsequently split
on a balanced beam splitter to generate a path-entangled
single-photon state. One mode is then amplified using a
single-mode squeezer (similar to a phase-sensitive amplifier)
to produce the following state:

|�〉 = 1√
2

(|1〉|�+〉 + |0〉|�−〉), (2)

where |�+〉 = S(r)|0〉 and |�−〉 = S(r)|1〉 are orthogonal
states with an average photon number of 〈�+|n|�+〉 = sinh r

and 〈�−|n|�−〉 = 2 sinh r + cosh r , respectively. S(r) =
exp( r

2 (a†2 − a2)) is the squeezing operator, r is the squeez-
ing parameter, a is the annihilation operator, and |0〉(|1〉)
represent the vacuum (single-photon) state. The number of
photons of the squeezed states is limited by the degree of
attainable squeezing. For strongly pumped optical paramet-
ric amplifiers, however, this number can be very large as
shown in the experiment of Ref. [19]. In this regime the
states become macroscopic in the photon number degree of
freedom.

Alternatively, one could substitute the squeezing operation
with a much simpler displacement operation [represented
by D(β) where β is the displacement amplitude] in which
the macroscopic state would be |�+〉 = D(β)|0〉 = |β〉 and
|�−〉 = D(β)|1〉, that is, a coherent state and a displaced
single-photon state. This scheme is related to the one suggested
in Ref. [27]. However, the two macroscopic states cannot
be made perfectly macroscopically distinguishable in their
photon numbers. This will require a microscopic parity
measurement.

III. MICRO-MACRO ENTANGLEMENT
AND REMOTE PREPARATION

Since the macroscopic states |�±〉 are orthogonal, the
micro-macro state in (2) is maximally entangled. However,
for remote preparation of the entangled state, that is, preparing
the Fock state components at one site (Alice) and the squeezed
state components at another site (Bob), one of the modes
must be sent through a lossy channel which inevitably will
lead to a degradation of the entanglement rendering the
state nonmaximally entangled. It is, however, possible to
circumvent the propagation losses as the delocalized single
photon can be heralded at a distance using the method outlined
in Refs. [28–30]: The generation of the path-entangled photon
state can be implemented employing two sources of two-mode
squeezed states [one at Alice (A) and one at Bob (B)]. One
mode from each source combines at a symmetric beam splitter,
and the measurement of a single photon heralds the desired
state. The remotely prepared path-entangled single-photon
state is then subsequently squeezed at one site (e.g., at Bob) to
generate the required state [see Fig. 1(b)]. Using this approach,
maximally entangled micro-macro states can be generated at a
distance independent on the losses between the two sites. We
note, however, that the increase in the state purity is traded for
a decrease in the generation rate.

Characterizing the entanglement of the micro-macro state
has been debated in the literature. In the experiment of
Ref. [19], the entanglement was quantified by using a Stokes
parameter measurement to measure the polarization degree of
freedom of the single photon and a special filter detector to dis-
criminate the two multiphoton states [22]. Homodyne tomog-
raphy could not be used in this experiment to fully characterize
the state due to the a posteriori type of generation scheme. On
the contrary, the schemes suggested in this paper are based on
heralding (that is, the states are not produced a posteriori), and
thus homodyne detection can be used to fully characterize the
state. With two-mode homodyne tomography, the full density
matrix can be reconstructed and the entanglement can be
evaluated [33]. An alternative to homodyne tomography is
to unsqueeze the macroscopic states and subsequently use a
photon counter to measure the resulting Fock states [22].

IV. MICRO-MACRO ENTANGLEMENT
VIA SINGLE-PHOTON SUBTRACTION

The squeezing of a single photon as introduced above
is identical to subtracting a single photon from a squeezed
vacuum state. This leaves open another way of preparing the
entangled state in (2) at a distance. The circuit is illustrated
in Fig. 1(c) (without the optional box). The idea is to jointly
subtract a single photon from two locally prepared quantum
states: a single-photon state at Alice’s site and a squeezed
vacuum state at Bob’s site. The joint subtraction is enabled
by three beam splitters and a single-photon counter which is
described by the nonunitary operation

√
T aA + √

1 − T aB in
the limit of very low reflection of the tapping beam splitters.
aA and aB are the annihilation operators acting on the modes
of Alice and Bob, respectively, and T is the transmission
coefficient of the “measurement” beam splitter [see Fig. 1(c)].
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The transformation reads

|1〉S(r)|0〉 → |�〉 = (
√

T aA + √
1 − T aB)|1〉S(r)|0〉

=
√

T |0〉S(r)|0〉 + √
1 − T |1〉aBS(r)|0〉

= |0〉(
√

T S(r)|0〉)
+ |1〉(√1 − T sinh rS(r)|1〉), (3)

which is identical to (2) for
√

T = √
1 − T sinh r (up to a

bit-flip operation), and therefore the schemes in Figs. 1(a) and
1(c) are identical assuming perfect photon subtraction and T =
sinh2 r/(1 + sinh2 r). Note that |�〉 has not been normalized—
the photon subtraction is probabilistic and therefore does not
preserve the normalization.

As the purity of the resulting state is independent on the
losses of the joint measurement and the channel, the state
can be prepared remotely without degradation. However, as
pointed out above, the preparation rate will depend on the
losses. The generation strategy [in Fig. 1(c)] has the addi-
tional practical advantage of using only off-line nonclassical
transformations which means that there is no need of injecting
the nonclassical state into a nonlinear element as is the case
in Figs. 1(a) and 1(b). Alternatively, an off-line squeezing
operation can be implemented using homodyne-based electro-
optical feed-forward [31,32].

V. MACROSCOPICITY OF THE MICRO-MACRO
STATE IN PHASE SPACE

To qualify as a cat state, the two macroscopic states
should be detectable with a coarse-grained detector, that is,
the measurement outcomes should be well separated in a
particular degree of freedom. For example, they should have
macroscopically different photon numbers or macroscopically
different quadrature values such that a coarse-grained (or
noisy) intensity or homodyne detector can easily discriminate

the two states. We refer to this macroscopic distinguishability
as the mascroscopicity of the components. We note that
according to this definition, the two components can have
a small macroscopicity even if they are macroscopic in size
(that is, having large energies).

In the following we will consider the macroscopicity of
the state with respect to the amplitude quadrature, or in other
words, we consider the separation of the components of the su-
perposition state in phase space. With this pointer observable,
we quantify the macroscopicity with two parameters. The first
one is the mean distance between the two macroscopic states
in phase space,

D = 1√
2
|〈�+|x|�+〉 − 〈�−|x|�−〉|, (4)

where x = (a + a†)/
√

2 is the amplitude quadrature. The sec-
ond quantifying parameter is the success rate in discriminating
the two states by a homodyne detector,

P = 1
2 (〈�+|�+|�+〉 + 〈�−|�−|�−〉), (5)

where the measurement projectors have been defined as �+ =∫ ∞
0 |x〉〈x| for a successful measurement of |�+〉 and �− =∫ 0
−∞ |x〉〈x| for a successful measurement of |�−〉.

Using these phase-space measures for the macroscopicity,
the state in Eq. (3) does not appear to be macroscopic as
its macroscopic components are largely overlapping in phase
space. However, it can be simply rewritten as

|�〉 = 1
2 ((|0〉 + |1〉)|�+〉 + (|0〉 − |1〉)|�−〉), (6)

where the new macroscopic states are |�±〉 = |�+〉 ± |�−〉 =√
T S(r)|0〉 ± √

1 − T sinh rS(r)|1〉. In the leftmost column
of Fig. 2 we plot the squared wave functions (quadrature
probability distributions) of these two macroscopic com-
ponents for different degrees of squeezing. The solid line
wave packets are associated with states for which we chose

FIG. 2. (Color online) Quadrature probability distributions for the macroscopic components |�+〉 (dark) and |�−〉 (light) generated using
the setup in Fig. 1(c) for different photon subtractions m, and different degrees of squeezing. The solid line wave packets correspond to a
transmission coefficient of T = 1/2 of the beam splitter for joint subtraction whereas the shaded packets are associated with the balanced case
where T = Tbal.
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FIG. 3. (Color online) Mean phase-space distance of the two
macroscopic states as a function of the degree of squeezing for
different photon number subtractions. The dashed curves represent
the results for T = 1/2 while the solid lines are for T = Tbal.

T = 1/2 while the shaded wave packets correspond to the
case where the macroscopic components have equal weights,
that is, for T = sinh2 r/(1 + sinh2 r). We see from the plots
that the separation D increases with increasing squeezing, a
trend which is quantified in Fig. 3 by the black lines. The
overlap between the states, however, is constant with respect
to the squeezing for balanced components (black solid line
in Fig. 4) while it follows a more complicated structure for
T = 1/2 (black dashed line in Fig. 4). Therefore, by choosing
a proper splitting ratio, the success in discriminating the two
components in a single measurement is quite high (90%) for
any degree of squeezing, but each of the components only
become macroscopic for high degrees of squeezing.

FIG. 4. (Color online) Success rate in discriminating the two
macroscopic states with a dichotomic homodyne detector as a
function of the degree of squeezing for different photon number
subtractions. The dashed curves represent the results for T = 1/2
while the solid lines are for T = Tbal.

VI. GENERATION OF MICRO-MACRO STATES
BY MULTIPHOTON SUBTRACTION

In this section we outline an approach that allows for
a further increase of the success rate in discriminating the
macroscopic components P , as well as an increase in the
phase-space distance D. Instead of using squeezed vacuum
as the input to the generation process [Fig. 1(c)], we propose
to use photon-subtracted squeezed vacuum states. This can
be implemented by tapping off a small part of the squeezed
beam and registering a certain number of photons using a
photon counter [see the optional box in Fig. 1(c)]. Upon
the registration of, say m photons, an m-photon-subtracted
squeezed state is heralded. Experimentally, up to three photons
have been subtracted from a squeezed vacuum state [15].

An m-photon-subtracted squeezed state reads [34]

|ψ (m)〉 = NmamS(r)|0〉

= Nm

1√
cosh r

∞∑

k�m/2

(2k)!(tanh r)k

2kk!
√

(2k − m)!
|2k − m〉, (7)

with normalization N−2
m = m!(−i sinh r)mPm(i sinh r), where

Pm are the Legendre polynomials. By using this state as the
input of the circuit in Fig. 1(c), the output state is as in Eq. (6),
where the microscopic states are |0〉 ± |1〉 as before, but now
with

|�±〉 = (
√

T am ± √
1 − T am+1)S(r)|0〉. (8)

The two macroscopic components are balanced (i.e., they have
equal coefficients after normalization of the state) by setting
T = Tbal = 〈n〉/(1 + 〈n〉) where 〈n〉 is the photon number of
the input state. To visualize the macroscopicity of the states, we
first plot the quadrature probability distributions for |�±〉 (for
the amplitude quadrature) for different photon subtractions m

and for a different amount of squeezing. The result is illustrated
in Fig. 2 and it is clear that the phase-space distance between
the two states increases with increasing squeezing parameter
and with an increasing number of prior photon subtractions
m. To quantify this effect, in Fig. 3 we plot the difference of
the expectation values D of the amplitude quadratures of the
two states, and it is clear from this plot that the mean distance
becomes larger as the squeezing increases. The solid curves
represent the balanced case (T = Tbal) while the dashed curves
correspond to T = 1/2.

From the plots in Fig. 2 it seems that the overlap between the
states decreases as the squeezing and the number of subtrac-
tions increase. However, the exact trend is more complicated
as shown in Fig. 4 where the success rate in discrimination
is plotted against the squeezing for a different number of
photon subtractions and for T = Tbal (solid) and T = 1/2
(dashed). We see that for low squeezing, the subtraction of
an odd number of photons yields a higher success rate than
for the subtraction of an even number of photons. However,
the general trend (in the case of balanced states) is a rapid
increase with the squeezing reaching values well above 90%.
We also note that the rate reaches a maximum for a certain
squeezing degree (and slightly decreases for higher values of
the squeezing) depending on the photon subtraction number.
This behavior is even more pronounced for T = 1/2. It is
caused by the occurrence of side lobes of the wave functions for
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FIG. 5. (Color online) Contour plots of the success rate in discriminating the two macroscopic states with a dichotomic homodyne detector
as a function of the degree of squeezing and the beam-splitter transmission. The white dashed curves represent the case where the transmission
coefficient is set such that the two macroscopic components of the superposition are balanced, T = Tbal.

high squeezing degrees which is evident in Fig. 2 for T = 1/2
but less clear for T = Tbal as in this case the side lobes are
very small.

As the discrimination rate is very close to 100%, the
macroscopicity can be solely described by the mean distance
D. Considering for example an input state with a single
photon subtracted from a 5-dB squeezed state (corresponding
to m = 1), the distance is D ≈ 3, corresponding to six shot
noise units, while the discrimination rate is about 98%.

Finally, in Fig. 5 we plot the success rate as a function of the
transmission T and the squeezing degree. The maximum rate
is indicated by the white dashed lines and they correspond to
the cases of balanced macro-component for which T = Tbal.

We note that although we have been considering the
macroscopicity with respect to a quadrature measurement,
it can be directly translated into a photon number measure-
ment. The states |�−〉 and |�+〉 cannot be discriminated
by an intensity measurement as the information about the
two states lies in their phases. However, by performing a
simple displacement operation with the amplitude β = D/2,
the state |�−〉 will closely resemble the vacuum state while
the state |�+〉 will be shifted to a higher excited state
approximatively containing an average photon number of |D|2.
With the example above—single-photon-subtracted 5-dB
squeezed state—the two states will after displacement contain
approximately zero and nine photons, respectively. We note
that the success rate in discriminating the two states with a
photon detector might be further improved by an additional
phase-space displacement [35].

VII. COHERENT STATE SUPERPOSITIONS

The photon-subtracted squeezed states |ψ (m)〉 are reminis-
cent of the coherent states’ superpositions |α〉 ± |−α〉 [36].
However, they are only approximations, and thus to produce
the state,

|m+〉|α〉 + |m−〉|−α〉, (9)

with macroscopic coherent states, a real coherent state super-
position is required at the input to the protocol. By injecting

such a state into the generation process (that is, coherently
subtracting a single photon from a single-photon state and a
coherent state superposition), we find

|1〉|+〉 → (
√

T aA + √
1 − T aB)|1〉N+(|α〉 + | − α〉)

=
√

T |0〉|+〉 + √
1 − T α

N+
N−

|1〉|−〉, (10)

where |±〉 = N±(|α〉 ± |−α〉) with normalization constant
N−2

± = 2 ± 2e−2|α|2 . This is maximally entangled (balanced)
for

√
T = √

1 − T αN+/N−. However, to obtain the state in
(9) where the macroscopic components are macroscopically
distinct in the pointer observable—the amplitude quadrature—
we choose the balanced T and rewrite

(10) ∝ (|0〉 + |1〉)|α〉 + (|0〉 − |1〉)|−α〉, (11)

which is similar to (9) if the microscopic states are |m±〉 =
|0〉 ± |1〉. We note that it is also possible to transform
the state in (10) into |0〉|α〉 + |1〉| − α〉 using a Hadamard
transformation on mode B. The Hadamard transform on
coherent state superpositions can be implemented with linear
optics and non-Gaussian resources [37,38], and has been
experimentally demonstrated [39].

It is clear that for large excitations the two coherent states
are macroscopically distinct in their quadrature degree of
freedom. The mean phase-space separation between the two
states is D = 2

√
2α (as also noted in [40]) and the success

rate in discriminating them with the dichotomic homodyne
detector is P = 1 − (1 − erf(

√
2α))/2 [41] which is rapidly

increasing with the excitation.

VIII. TELEPORTATION

A microscopic single-photon qubit can be mapped onto a
macroscopic qumode using the entangled states proposed in
this paper. The entangled state is used in a teleportation pro-
tocol with an arbitrary qubit as the input signal: c0|0〉 + c1|1〉
where c0 and c1 are complex numbers. A Bell measurement
that projects onto the four Bell states is jointly performed onto
the signal and the entangled state, and the outcome is used to
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perform a unitary transformation onto the remaining part of the
entangled state. A full Bell state measurement is in principle
possible [42] but only two projections can be obtained with
simple linear optics and vacuum resources [18,43]. With this
scheme it is possible to make the following transformation:

c0|0〉 + c1|1〉 → c0|φ1〉 + c1|φ2〉, (12)

where |φ1〉 and |φ2〉 are the macroscopic states |�±〉, |�±〉 or
|±α〉 depending on which entangled state is being used for the
teleportation. Such an operation enables one to link a qubit
processor to a qumode processor.

IX. CONCLUSION

In conclusion, we have suggested several optical circuits
for generating a heralded version of the micro-macro state
also known as the optical Schrödinger cat state. As opposed to
the previous proposals and implementations of a polarization
based micro-macro state, the suggested schemes are based on
heralding which means that the state can be fully characterized

with homodyne tomography. The macroscopicity of the
micro-macro states has been quantified by two phase-space
parameters; the mean distance in phase space between the two
macroscopic states and the success rate in discriminating the
two states with a homodyne detector. We found that the success
rate is above 90% and that the mean distance is increasing
monotonically with the degree of squeezing. Furthermore,
it was shown that the state can be used as the resource
in a teleporter to map microscopic qubits onto macroscopic
qumodes, possibly at remote locations as the entangled state
can be efficiently produced at a distance.

Note added in proof. Recently we became aware of a
similar strategy for preparing a micro-macro state illustrated
in Fig. 1(a), which was proposed in Ref. [44].
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